Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Front Physiol ; 15: 1352391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562620

RESUMO

For patients with chronic obstructive pulmonary disease (COPD), the assessment of the treatment efficacy during hospitalization is of importance to the optimization of clinical treatments. Conventional spirometry might not be sensitive enough to capture the regional lung function development. The study aimed to evaluate the feasibility of using electrical impedance tomography (EIT) as an objective bedside evaluation tool for the treatment of acute exacerbation of COPD (AECOPD). Consecutive patients who required hospitalization due to AECOPD were included prospectively. EIT measurements were conducted at the time of admission and before the discharge simultaneously when a forced vital capacity maneuver was conducted. EIT-based heterogeneity measures of regional lung function were calculated based on the impedance changes over time. Surveys for attending doctors and patients were designed to evaluate the ease of use, feasibility, and overall satisfaction level to understand the acceptability of EIT measurements. Patient-reported outcome assessments were conducted. User's acceptance of EIT technology was investigated with a five-dimension survey. A total of 32 patients were included, and 8 patients were excluded due to the FVC maneuver not meeting the ATS criteria. Spirometry-based lung function was improved during hospitalization but not significantly different (FEV1 %pred.: 35.8% ± 6.7% vs. 45.3% ± 8.8% at admission vs. discharge; p = 0.11. FVC %pred.: 67.8% ± 0.4% vs. 82.6% ± 5.0%; p = 0.15. FEV1/FVC: 0.41 ± 0.09 vs. 0.42 ± 0.07, p = 0.71). The symptoms of COPD were significantly improved, but the correlations between the improvement of symptoms and spirometry FEV1 and FEV1/FVC were low (R = 0.1 and -0.01, respectively). The differences in blood gasses and blood tests were insignificant. All but one EIT-based regional lung function parameter were significantly improved after hospitalization. The results highly correlated with the patient-reported outcome assessment (R > 0.6, p < 0.001). The overall acceptability score of EIT measurement for both attending physicians and patients was high (4.1 ± 0.8 for physicians, 4.5 ± 0.5 for patients out of 5). These results demonstrated that it was feasible and acceptable to use EIT as an objective bedside evaluation tool for COPD treatment efficacy.

3.
J Thorac Dis ; 16(2): 979-988, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505046

RESUMO

Background: Esophageal pressure (Pes) has been used as a surrogate of pleural pressure (Ppl) to titrate positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS) patients. The relationship between Pes and PEEP remains undetermined. Methods: A gastric tube with a balloon catheter was inserted to monitor Pes in moderate to severe ARDS patients who underwent invasive mechanical ventilation. To assess the end-expiratory Pes response (ΔPes) to PEEP changes (ΔPEEP), the PEEP level was decreased and increased subsequently (with an average change of 3 cmH2O). The patients underwent the following two series of PEEP adjustment: (I) from PEEP-3 cmH2O to PEEPbaseline; and (II) from PEEPbaseline to PEEP+3 cmH2O. The patients were classified as "PEEP-dependent type" if they had ΔPes ≥30% ΔPEEP and were otherwise classified as "PEEP-independent type" (ΔPes <30% ΔPEEP in any series). Results: In total, 54 series of PEEP adjustments were performed in 18 ARDS patients. Of these patients, 12 were classified as PEEP-dependent type, and six were classified as PEEP-independent type. During the PEEP adjustment, end-expiratory Pes changed significantly in the PEEP-dependent patients, who had a Pes of 10.8 (7.9, 12.3), 12.5 (10.5, 14.9), and 14.5 (13.1, 18.3) cmH2O at PEEP-3 cmH2O, PEEPbaseline, and PEEP+3 cmH2O, respectively (median and quartiles; P<0.0001), while end-expiratory transpulmonary pressure (PL) was maintained at an optimal range [-0.1 (-0.7, 0.4), 0.1 (-0.6, 0.5), and 0.3 (-0.3, 0.7) cmH2O, respectively]. In the PEEP-independent patients, the Pes remained unchanged, with a Pes of 15.4 (11.4, 17.8), 15.5 (11.6, 17.8), and 15.4 (11.7, 18.30) cmH2O at each of the three PEEP levels, respectively. Meanwhile, end-expiratory PL significantly improved [from -5.5 (-8.5, -3.4) at PEEP-3 cmH2O to -2.5 (-5.0, -1.6) at PEEPbaseline to -0.5 (-1.8, 0.3) at PEEP+3 cmH2O; P<0.01]. Conclusions: Two types of Pes phenotypes were identified according to the ΔPes to ΔPEEP. The underlying mechanisms and implications for clinical practice require further exploration.

4.
Respir Res ; 25(1): 128, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500141

RESUMO

BACKGROUND: Adequate cough or exsufflation flow can indicate an option for safe tracheostomy decannulation to noninvasive management. Cough peak flow via the upper airways with the tube capped is an outcome predictor for decannulation readiness in patients with neuromuscular impairment. However, this threshold value is typically measured with tracheotomy tube removed, which is not acceptable culturally in China. The aim of this study was to assess the feasibility and safety of using cough flow measured with tracheostomy tube and speaking valve (CFSV) > 100 L/min as a cutoff value for decannulation. STUDY DESIGN: Prospective observational study conducted between January 2019 and September 2022 in a tertiary rehabilitation hospital. METHODS: Patients with prolonged tracheostomy tube placement were referred for screening. Each patient was assessed using a standardized tracheostomy decannulation protocol, in which CFSV greater than 100 L/min indicated that the patients' cough ability was sufficient for decannulation. Patients whose CFSV matched the threshold value and other protocol criteria were decannulated, and the reintubation and mortality rates were followed-up for 6 months. RESULTS: A total of 218 patients were screened and 193 patients were included. A total of 105 patients underwent decannulation, 103 patients were decannulated successfully, and 2 patients decannulated failure, required reinsertion of the tracheostomy tube within 48 h (failure rate 1.9%). Three patients required reinsertion or translaryngeal intubation within 6 months. CONCLUSIONS: CFSV greater than 100 L/min could be a reliable threshold value for successful decannulation in patients with various primary diseases with a tracheostomy tube. TRIAL REGISTRATION: This observational study was not registered online.


Assuntos
Respiração , Traqueostomia , Humanos , Intubação Intratraqueal , Pico do Fluxo Expiratório , Tosse/diagnóstico , Estudos Retrospectivos
6.
Physiol Meas ; 45(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38479002

RESUMO

Objective. This study aims to explore the possibility of using electrical impedance tomography (EIT) to assess pursed lips breathing (PLB) performance of patients with chronic obstructive pulmonary disease (COPD).Methods. 32 patients with COPD were assigned equally to either the conventional group or the EIT guided group. All patients were taught to perform PLB by a physiotherapist without EIT in the conventional group or with EIT in the EIT guided group for 10 min. The ventilation of all patients in the final test were continuously monitored using EIT and the PLB performances were rated by another physiotherapist before and after reviewing EIT. The global and regional ventilation between two groups as well as between quite breathing (QB) and PLB were compared and rating scores with and without EIT were also compared.Results.For global ventilation, the inspiratory depth and the ratio of expiratory-to-inspiratory time during PLB was significantly larger than those during QB for both group (P< 0.001). The inspiratory depth and the ratio of expiratory-to-inspiratory time during PLB in the EIT guided group were higher compared to those in the conventional group (P< 0.001), as well as expiratory flow expiratory uniformity and respiratory stability were better (P< 0.001). For regional ventilation, center of ventilation significantly decreased during PLB (P< 0.05). The expiratory time constant during PLB in the EIT guided group was greater than that in the conventional group (P< 0.001). Additionally, Bland-Altman plots analysis suggested a high concordance between subjective rating and rating with the help of EIT, but the score rated after EIT observation significantly lower than that rated subjectively in both groups (score drop of -2.68 ± 1.1 in the conventional group and -1.19 ± 0.72 in the EIT guided group,P< 0.01).Conclusion.EIT could capture the details of PLB maneuver, which might be a potential tool to quantitatively evaluate PLB performance and thus assist physiotherapists to teach PLB maneuver to patients.


Assuntos
Lábio , Doença Pulmonar Obstrutiva Crônica , Humanos , Impedância Elétrica , Respiração , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia
8.
Heliyon ; 10(3): e25405, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352735

RESUMO

Pneumothorax is an emergency in thoracic surgeries and respiratory medicine. A technique is warranted for real-time monitoring of pneumothorax at the bedside so that rapid diagnosis and timely intervention can be achieved. We report herein a case in which electrical impedance tomography (EIT) was employed at the bedside to monitor lung ventilation of a patient with spontaneous pneumothorax during treatment. It was found that the affected side/healthy side ventilation ratio and global inhomogeneity were strongly correlated with the severity of pneumothorax. The use of EIT allowed intuitive observation of the effect of pneumothorax on ventilation, which helped the doctors make immediate diagnosis and intervention. After timely and successful treatment, the patient was discharged. This is the first case reporting a complete therapeutic course of spontaneous pneumothorax assessed with EIT. Our case demonstrated that EIT could monitor regional ventilation loss of the affected side of pneumothorax patients at the bedside, and dynamically assess the treatment effect of pneumothorax, which provides an important imaging basis for clinical pneumothorax treatment.

9.
Commun Med (Lond) ; 4(1): 18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361130

RESUMO

BACKGROUND: Lung regions excluded from mechanical insufflation are traditionally assumed to be spared from ventilation-associated lung injury. However, preliminary data showed activation of potential mechanisms of injury within these non-ventilated regions (e.g., hypoperfusion, inflammation). METHODS: In the present study, we hypothesized that non-ventilated lung injury (NVLI) may develop within 24 h of unilateral mechanical ventilation in previously healthy pigs, and we performed extended pathophysiological measures to profile NVLI. We included two experimental groups undergoing exclusion of the left lung from the ventilation with two different tidal volumes (15 vs 7.5 ml/kg) and a control group on bilateral ventilation. Pathophysiological alteration including lung collapse, changes in lung perfusion, lung stress and inflammation were measured. Lung injury was quantified by histological score. RESULTS: Histological injury score of the non-ventilated lung is significantly higher than normally expanded lung from control animals. The histological score showed lower intermediate values (but still higher than controls) when the tidal volume distending the ventilated lung was reduced by 50%. Main pathophysiological alterations associated with NVLI were: extensive lung collapse; very low pulmonary perfusion; high inspiratory airways pressure; and higher concentrations of acute-phase inflammatory cytokines IL-6, IL-1ß and TNF-α and of Angiopoietin-2 (a marker of endothelial activation) in the broncho-alveolar lavage. Only the last two alterations were mitigated by reducing tidal volume, potentially explaining partial protection. CONCLUSIONS: Non-ventilated lung injury develops within 24 h of controlled mechanical ventilation due to multiple pathophysiological alterations, which are only partially prevented by low tidal volume.


Respiratory failure that occurs in cases of atelectasis, pneumonia and acute hypoxemic respiratory failure a machine called a mechanical ventilator is used to move air in and out of the patient's lungs. We know that the use of a mechanical ventilator can induce lung injury, but complete exclusion from ventilation might not be safe. Using pig lungs to mimic the patient's lungs, we evaluated the use of a ventilator against non-use. We find that the lungs sustained injury regardless of ventilator use. The non-ventilated lung injury consisted of collapse (lack of expansion), low amount of blood flow, high ventilation pressure and inflammatory response. Physicians should be aware that also the regions of the lung not receiving ventilation are at risk of injury.

10.
Heliyon ; 10(3): e25159, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322858

RESUMO

Background: Pulmonary embolism (PE) is a common worldwide disease with high mortality. Timely diagnosis and management of PE could significantly improve clinical outcomes. Electrical impedance tomography (EIT) is a novel noninvasive technique to monitor lung perfusion and help detect PE at the bedside. Here we present a case of clinical management of subsegmental PE with the help of the bilateral ventilation and perfusion(V/Q) asymmetry EIT image. Case presentation: A 72-year-old cancer patient with respiratory failure and acute kidney injury in the intensive care unit was suspected of PE based on his clinical manifestation. The contraindication of computed tomography pulmonary angiography (CTPA) for PE diagnosis prevented escalating anticoagulation therapy. Besides EIT ventilation and perfusion monitoring showed an abnormal asymmetry V/Q match between the bilateral lungs which promoted our decision to start systemic continuous anticoagulation therapy and improved the patient clinically. The following CTPA which clarified the diagnosis of PE suggests that the patient has benefited from our decision. Conclusion: For critically ill patients with suspected PE, the asymmetry of the EIT V/Q image may provide crucial objective information for clinical management.

11.
BMJ Open ; 14(2): e080828, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307528

RESUMO

INTRODUCTION: Previous studies suggested that electrical impedance tomography (EIT) has the potential to guide positive end-expiratory pressure (PEEP) titration via quantifying the alveolar collapse and overdistension. The aim of this trial is to compare the effect of EIT-guided PEEP and acute respiratory distress syndrome (ARDS) network low PEEP/fraction of inspired oxygen (FiO2) table strategy on mortality and other clinical outcomes in patients with ARDS. METHODS: This is a parallel, two-arm, multicentre, randomised, controlled trial, conducted in China. All patients with ARDS under mechanical ventilation admitted to the intensive care unit will be screened for eligibility. The enrolled patients are stratified by the aetiology (pulmonary/extrapulmonary) and partial pressure of arterial oxygen/FiO2 (≥150 mm Hg or <150 mm Hg) and randomised into the intervention group or the control group. The intervention group will receive recruitment manoeuvre and EIT-guided PEEP titration. The EIT-guided PEEP will be set for at least 12 hours after titration. The control group will not receive recruitment manoeuvre routinely and the PEEP will be set according to the lower PEEP/FiO2 table proposed by the ARDS Network. The primary outcome is 28-day survival. ANALYSIS: Qualitative data will be analysed using the χ2 test or Fisher's exact test, quantitative data will be analysed using independent samples t-test or Mann-Whitney U test. Kaplan-Meier analysis with log-rank test will be used to evaluate the 28-day survival rate between two groups. All outcomes will be analysed based on the intention-to-treat principle. ETHICS AND DISSEMINATION: The trial is approved by the Institutional Research and Ethics Committee of the Peking Union Medical College Hospital. Data will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT05307913.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Impedância Elétrica , Prognóstico , Síndrome do Desconforto Respiratório/terapia , Tomografia , Oxigênio , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
12.
Physiol Meas ; 45(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266301

RESUMO

Objective.Wearable electrical impedance tomography (EIT) can be used to monitor regional lung ventilation and perfusion at the bedside. Due to its special system architecture, the amplitude of the injected current is usually limited compared to stationary EIT system. This study aims to evaluate the performance of current injection patterns with various low-amplitude currents in healthy volunteers.Approach.A total of 96 test sets of EIT measurement was recorded in 12 healthy subjects by employing adjacent and opposite current injection patterns with four amplitudes of small current (i.e. 1 mA, 500 uA, 250 uA and 125 uA). The performance of the two injection patterns with various currents was evaluated in terms of signal-to-noise ratio (SNR) of thorax impedance, EIT image metrics and EIT-based clinical parameters.Main results.Compared with adjacent injection, opposite injection had higher SNR (p< 0.01), less inverse artifacts (p< 0.01), and less boundary artifacts (p< 0.01) with the same current amplitude. In addition, opposite injection exhibited more stable EIT-based clinical parameters (p< 0.01) across the current range. For adjacent injection, significant differences were found for three EIT image metrics (p< 0.05) and four EIT-based clinical parameters (p< 0.01) between the group of 125 uA and the other groups.Significance.For better performance of wearable pulmonary EIT, currents greater than 250 uA should be used in opposite injection, 500 uA in adjacent one, to ensure a high level of SNR, a high quality of reconstructed image as well as a high reliability of clinical parameters.


Assuntos
Pulmão , Dispositivos Eletrônicos Vestíveis , Humanos , Impedância Elétrica , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X , Tomografia/métodos
13.
Physiol Meas ; 45(1)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38176102

RESUMO

Objective.The aim of the present study was to evaluate the influence of one-sided pulmonary nodule and tumour on ventilation distribution pre- and post- partial lung resection.Approach.A total of 40 consecutive patients scheduled for laparoscopic lung parenchymal resection were included. Ventilation distribution was measured with electrical impedance tomography (EIT) in supine and surgery lateral positions 72 h before surgery (T1) and 48 h after extubation (T2). Left lung to global ventilation ratio (Fl), the global inhomogeneity index (GI), standard deviation of regional ventilation delay (RVDSD) and pendelluft amplitude (Apendelluft) were calculated to assess the spatial and temporal ventilation distribution.Main results.After surgery (T2), ventilation at the operated chest sides generally deteriorated compared to T1 as expected. For right-side resection, the differences were significant at both supine and left lateral positions (p< 0.001). The change of RVDSDwas in general more heterogeneous. For left-side resection, RVDSDwas worse at T2 compared to T1 at left lateral position (p= 0.002). The other EIT-based parameters showed no significant differences between the two time points. No significant differences were observed between supine and lateral positions for the same time points respectively.Significance.In the present study, we found that the surgery side influenced the ventilation distribution. When the resection was performed on the right lung, the postoperative ipsilateral ventilation was reduced and the right lung ratio fell significantly. When the resection was on the left lung, the ventilation delay was significantly increased.


Assuntos
Laparoscopia , Tomografia , Humanos , Tomografia/métodos , Respiração , Pulmão/cirurgia , Tomografia Computadorizada por Raios X , Impedância Elétrica , Ventilação Pulmonar
14.
Biomedicines ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002067

RESUMO

High-flow nasal cannula (HFNC) is widely used to treat hypoxemic respiratory failure. The effectiveness of HFNC treatment and the methods for monitoring its efficacy in the general ward remain unclear. This prospective observational study enrolled 42 patients who had acute hypoxemic respiratory failure requiring HFNC oxygen therapy in the general adult respiratory ward. The primary outcome was the all-cause in-hospital mortality. Secondary outcomes included the association between initial blood test results and HFNC outcomes. Regional ventilation distributions were monitored in 24 patients using electrical impedance tomography (EIT) after HFNC initiation. Patients with successful HFNC treatment had better in-hospital survival (94%) compared to those with failed HFNC treatment (0%, p < 0.001). Neutrophil-to-lymphocyte ratios of ≥9 were more common in patients with failed HFNC (70%) compared to those with successful HFNC (52%, p = 0.070), and these patients had shorter hospital survival rates after HFNC treatment (p = 0.046, Tarone-Ware test). Patients with successful HFNC treatment had a more central ventilation distribution compared to those with failed HFNC treatment (p < 0.05). Similarly, patients who survived HFNC treatment had a more central distribution compared to those who did not survive (p < 0.001). We concluded that HFNC in the general respiratory ward may be a potential rescue therapy for patients with respiratory failure. EIT can potentially monitor patients receiving HFNC therapy.

15.
Crit Care ; 27(1): 462, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012731

RESUMO

BACKGROUND: Prone position has been shown to improve oxygenation and survival in patients with early acute respiratory distress syndrome (ARDS). These beneficial effects are partly mediated by improved ventilation/perfusion (V/Q) distribution. Few studies have investigated the impact of early versus delayed proning on V/Q distribution in patients with ARDS. The aim of this study was to assess the regional ventilation and perfusion distribution in early versus persistent ARDS after prone position. METHODS: This is a prospective, observational study from June 30, 2021, to October 1, 2022 at the medical ICU in Zhongda Hospital, Southeast University. Fifty-seven consecutive adult patients with moderate-to-severe ARDS ventilated in supine and prone position. Electrical impedance tomography was used to study V/Q distribution in the supine position and 12 h after a prone session. RESULTS: Of the 57 patients, 33 were early ARDS (≤ 7 days) and 24 were persistent ARDS (> 7 days). Oxygenation significantly improved after proning in early ARDS (157 [121, 191] vs. 190 [164, 245] mm Hg, p < 0.001), whereas no significant change was found in persistent ARDS patients (168 [136, 232] vs.177 [155, 232] mm Hg, p = 0.10). Compared to supine position, prone reduced V/Q mismatch in early ARDS (28.7 [24.6, 35.4] vs. 22.8 [20.0, 26.8] %, p < 0.001), but increased V/Q mismatch in persistent ARDS (23.8 [19.8, 28.6] vs. 30.3 [24.5, 33.3] %, p = 0.006). In early ARDS, proning significantly reduced shunt in the dorsal region and dead space in the ventral region. In persistent ARDS, proning increased global shunt. A significant correlation was found between duration of ARDS onset to proning and the change in V/Q distribution (r = 0.54, p < 0.001). CONCLUSIONS: Prone position significantly reduced V/Q mismatch in patients with early ARDS, while it increased V/Q mismatch in persistent ARDS patients. Trial registration ClinicalTrials.gov (NCT05207267, principal investigator Ling Liu, date of registration 2021.08.20).


Assuntos
Pulmão , Síndrome do Desconforto Respiratório , Adulto , Humanos , Perfusão , Decúbito Ventral , Respiração , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Estudos Prospectivos
16.
Bioengineering (Basel) ; 10(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37892902

RESUMO

Individualized positive end-expiratory pressure (PEEP) combined with recruitment maneuvers improves intraoperative oxygenation in individuals undergoing robot-assisted prostatectomy. However, whether electrical impedance tomography (EIT)-guided individualized PEEP without recruitment maneuvers can also improve intraoperative oxygenation is unknown. To test this, fifty-six male patients undergoing elective robot-assisted laparoscopic prostatectomy were randomly assigned to either individualized PEEP (Group PEEPIND, n = 28) or a control with a fixed PEEP of 5 cm H2O (Group PEEP5, n = 28). Individualized PEEP was guided by EIT after placing the patients in the Trendelenburg position and performing intraperitoneal insufflation. Patients in Group PEEPIND maintained individualized PEEP without intermittent recruitment maneuvers, and those in Group PEEP5 maintained a PEEP of 5 cm H2O intraoperatively. Both groups were extubated in a semi-sitting position once the extubation criteria were met. The primary outcome was arterial oxygen partial pressure (PaO2)/inspiratory oxygen fraction (FiO2) prior to extubation. Other outcomes included intraoperative driving pressure, plateau pressure and dynamic, respiratory system compliance, and the incidence of postoperative hypoxemia in the post-operative care unit (PACU). Our results showed that the intraoperative median for PEEPIND was 16 cm H2O (ranging from 12 to 18 cm H2O). EIT-guided PEEPIND was associated with higher PaO2/FiO2 before extubation compared to PEEP5 (71.6 ± 10.7 vs. 56.8 ± 14.1 kPa, p = 0.003). Improved oxygenation extended into the PACU with a lower incidence of postoperative hypoxemia (3.8% vs. 26.9%, p = 0.021). Additionally, PEEPIND was associated with lower driving pressures (12.0 ± 3.0 vs. 15.0 ± 4.4 cm H2O, p = 0.044) and better compliance (44.5 ± 12.8 vs. 33.6 ± 9.1 mL/cm H2O, p = 0.017). Our data indicated that individualized PEEP guided by EIT without intraoperative recruitment maneuvers also improved perioperative oxygenation in patients undergoing robot-assisted laparoscopic radical prostatectomy, which could benefit patients with the risk of intraoperative hemodynamic instability caused by recruitment maneuvers. Trial registration: China Clinical Trial Registration Center Identifier: ChiCTR2100053839. This study was registered on 1 December 2021. The first patient was recruited on 15 December 2021.

17.
J Intensive Care ; 11(1): 41, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749637

RESUMO

BACKGROUND: This aim of study was to introduce a diaphragm-based EIT-belt placement method based on diaphragm position by ultrasound, and to evaluate the difference between diaphragm-based EIT-belt placement and conventional EIT-belt placement. METHOD: The diaphragm position (L0) determined by ultrasound was taken as zero reference level. The direction of headward is defined as positive, and toward feet is negative. For EIT data collection, the electrode belt was placed at 7 different levels, respectively (denoted as L-2 cm, L0, L2cm, L4cm, L6cm, L8cm, L10cm) at supine position in healthy volunteers. The diaphragm-based EIT-belt level (Lxcm) was defined where highest tidal impedance variation (TV) was achieved. Subsequently, EIT measurements were conducted at diaphragm-based EIT-belt levels and traditional EIT-belt level in 50 critically ill patients under mechanical ventilation. RESULT: The highest TV was achieved at L6cm and the smallest at L-2 cm., so the L6cm were taken as diaphragm-based EIT-belt level by ultrasound in 8 healthy volunteers. In 23 patients, the diaphragm-based EIT-belt plane agreed with the conventional planes (4th-6th ICS), which was defined as the Agreed group. Other patients were classified to the Disagreed group (above 4th ICS). The Disagreed group has a significantly higher BMI and lower global TV at the diaphragm-based EIT-belt plane compared to the Agreed group. CONCLUSIONS: The diaphragm-based EIT-belt position by ultrasound was feasible and resulted in different belt positions compared to the conventional position in > 50% of the examined subjects, especially in patients with higher BMI. Further study is required to validate the impact on EIT images with this novel method on clinical management.

19.
J Thorac Dis ; 15(6): 3237-3244, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37426144

RESUMO

Background: Mechanical ventilation (MV) is an important life-saving method in the intensive care unit (ICU). A lower mechanical power (MP) is associated with a better MV strategy. However, traditional MP calculating methods are complicated, and algebraic formulas seem to be rather practical. The aim of the present study was to compare the accuracy and application of different algebraic formulas calculating MP. Methods: A lung simulator, TestChest, was used to simulate pulmonary compliance variations. Using the TestChest system software, the parameters, including compliance and airway resistance, were set to simulate various acute respiratory distress syndrome (ARDS) lungs. Ventilator was also set to volume- and pressure-controlled modes with various parameter values (respiratory rate, RR, time of inspiration, Tinsp, positive end-expiratory pressure, PEEP) to ventilate the simulated lung of ARDS (with various respiratory system compliance, Crs). For the lung simulator, resistance of airway (Raw) was fixed to 5 cmH2O/L/s. Crs below lower inflation point (LIP) or above upper inflation point (UIP) was set to 10 mL/cmH2O. The reference standard geometric method was calculated offline with a customized software. Three algebraic formulas for volume-controlled and three for pressure-controlled were used to calculate MP. Results: The performances of the formulas were different, although the derived MP were significantly correlated with that derived from the reference method (R2>0.80, P<0.001). Under volume-controlled ventilation, medians of MP calculated with one equation was significantly lower than that with the reference method (P<0.001). Under pressure-controlled ventilation, median of MP calculated with two equations were significantly higher (P<0.001). The maximum difference was over 70% of the MP value calculated with the reference method. Conclusions: The algebraic formulas may introduce considerably large bias under the presented lung conditions, especially in moderate to severe ARDS. Cautious is required when selecting adequate algebraic formulas to calculate MP based on the formula's premises, ventilation mode, and patients' status. In clinical practice, the trend rather than the value of MP calculated by formulas should require more attention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...